

École Nationale des Sciences Appliquées Classes Préparatoires intégrées Semestre 3

A-U: 2020/2021

Travaux dirigés de MÉCANIQUE DU SOLIDE

Série 1: TORSEURS

Exercice 1:

Soit (A, \overrightarrow{V}) un vecteur lié défini dans la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ par :

$$A(-2,-1,2)$$
 et $\overrightarrow{V} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$

- 1. Calculer le moment du vecteur \overrightarrow{V} au point de coordonnées B(2,1,1).
- 2. Calculer le moment de (A, \overrightarrow{V}) par rapport à l'axe Δ passant par B et parallèle au vecteur $\overrightarrow{U} = 2\overrightarrow{i} 3\overrightarrow{k}$.

Exercice 2:

On se donne deux torseurs T_1 et T_2 . Chercher l'ensemble des points (s'il existe) de l'espace en lesquels leurs **moments** soient **colinéaires**.

Exercice 3:

Soient E l'espace vectoriel à trois dimensions et S une application linéaire de E dans E qui à tout vecteur \overrightarrow{U} de E associe son image $\overrightarrow{U'}=S(\overrightarrow{U})$. Nous nous intéressons au cas où S est une application antisymétrique définie par : $S(\overrightarrow{U})=L.\overrightarrow{U}$.

Trouver la matrice L associée à l'application antisymétrique S en prenant S_1, S_2 et S_3 comme composantes du vecteur \overrightarrow{S} .

Exercice 4:

A tout point P(x,y,z) de l'espace affine, on associe la famille de champs de vecteurs $\overrightarrow{V}_t(P)$ définie par :

$$\overrightarrow{V}_t(P) = \left(3y - tz + 1, -3x + 2tz, tx - t^2y - \frac{4}{3}\right)$$
 $t \in IR$

- 1. Montrer que les seuls champs équiprojectifs sont obtenus pour t=0 et t=2.
- 2. Déterminer pour chaque cas les torseurs associés par leurs éléments de réduction au point O(0,0,0).

Exercice 5:

On se donne deux glisseurs (A, \overrightarrow{U}) et (B, \overrightarrow{V}) tels que : $A(1,1,\alpha)$, B(0,2,0) , $\overrightarrow{U}(0,0,\alpha)$ et $\overrightarrow{V}(\beta,3,0)$ où α et β sont des réels. Soit le torseur $T=(A,\overrightarrow{U})+(B,\overrightarrow{V})$.

- 1. Donner les éléments de réduction de T au point O.
- 2. Quelle est la condition nécessaire et suffisante pour que T soit un glisseur?
- 3. Déterminer le support de T.

Exercice 6:

Soit trois glisseurs $(A_i, \overrightarrow{V_i})_{i=1,2,3}$ tel que :

$$A_1(0,0,a), A_2(a,0,0) \text{ et } A_3(0,a,0)$$
 ; $\overrightarrow{V_1}(2a,0,0), \overrightarrow{V_2}(0,3a,0) \text{ et } \overrightarrow{V_3}(0,0,4a).$

On considère le torseur :

$$T = \sum_{i=1}^{3} (A_i, \overrightarrow{V_i})$$

Déterminer les éléments de réduction de T en un point P quelconque ainsi que son axe centrale.

Exercice 7:

Considérons, dans un repère cartésien R(O,X,Y,Z) de base $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$, le système suivant de trois vecteurs liés définis par :

$$A_1(1,0,0)$$
 ; $\overrightarrow{V_1} = a\overrightarrow{i} + b\overrightarrow{j} + \overrightarrow{k}$

$$A_2(0,1,0)$$
 ; $\overrightarrow{V_2} = 2b\overrightarrow{i} - 2a\overrightarrow{j} - 3\overrightarrow{k}$

$$A_3(0,0,1)$$
 ; $\overrightarrow{V_3} = -8\overrightarrow{i} + \overrightarrow{j} + c\overrightarrow{k}$

Où a, b, et c sont des constantes réelles.

Pour quelles valeurs de a, b, et c le système des trois vecteurs liés est équivalent à un couple? Déterminer alors son moment.

Exercice 8:

On considère le champ de vecteurs \overrightarrow{W} qui à tout point M(x,y,z) associe le vecteur $\overrightarrow{W}(M)$ de composantes :

$$W_x = -1 - y - 2az$$

$$W_{u} = 3 + x - 2az$$

$$W_z = -2 + 2ax + a^2y$$

2

Où a est un paramètre réel.

- 1. Pour quelles valeurs de a le champ \overrightarrow{W} est un champ antisymétrique ?
- 2. Déterminer, dans chaque cas, les éléments de réduction du torseur associé.