ENSA -Kénitra-

Contrôle Continu De Chimie Organique "S3"

Exercice I

- Ecrire les formules topologiques et nommer les molécules de formule brute C4H10O.
- 2- Parmi ces molécules donner un couple d'isomères de position, un couple d'isomères de chaîne et un couple d'isomères de fonction.
- 3- Représenter en projection de Cram les énantiomères de la ou des molécules ayant un atome de carbone asymétrique.
- 4- Déterminer la configuration absolue des carbones asymétriques

Exercice II

1- Donner en nomenclature systématique (UICPA) les noms des composés a,b et c suivants:

2- Donner les formules semi-développées des composés suivants :

d- 4 - Ethyl - 3 - hydroxy - 2,7- diméthyl - 6 - oxooct-4-ènal.

e- 2-Oxo - 6 - vinyloct - 7- énenitrile.

f- Acide 2- cyano -3- formyl -5- oxopentanoîque

Exercice III

 Donner la configuration absolue de(s) carbone(s) asymétrique(s) existant dans les molécules suivantes.

Préciser dans chaque cas l'ordre de priorité des groupements.

CHO
$$CH(CH_3)_2$$
 CH_3 CH_3 CH_3 CH_2OH $CH=CH_2$ $CH=CH_2$

2- Représenter selon Cram l'énantiomère de A. A a-t-il une activité optique ?

Justifier

Que peut-on dire du pouvoir rotatoire spécifique de A par rapport à celui de son énantiomère ?

3- Représenter selon Cram un diastéréoisomère de C (les substituants classés les derniers selon CIP doivent être en arrière du plan). Donner la configuration absolue de(s) carbone(s) asymétrique(s). C a-t- il une activité optique ? Justifier

Que peut-on dire du pouvoir rotatoire spécifique de C par rapport à celui de son diastéréoisomère ?

4- Donner la représentation de Fischer du composé C.

Bonne Chance

SEMESTRE 3 : EXAMEN DE CHIMIE EN SOLUTION SESSION DE JANVIER

EXERCICE I

- 1. Solution de soude
 - a- Calculer la concentration molaire d'un litre de NaOH de densité par rapport à l'eau égale à 1,371 et de pourcentage massique égal à 35%.
 - b- Quel volume faut-il prélever de cette solution pour préparer 500 ml d'une solution 0,6 mole/L nommée S1 ?
 - c- Calculer le pH de cette solution S1 de soude
- 2. Solution d'acide acétique
 - a- Quelle masse d'acide acétique, CH₃COOH, faut-il dissoudre dans l'eau pour obtenir 250 ml d'une solution de concentration 1,2 mole/L nommée S2 ? b- Calculer le pH de cette solution S2
- 3. On mélange la solution S1 et la solution S2. Calculer le pH de ce mélange nommé S3
- 4. Calculer le pH d'une solution (S4) obtenue en ajoutant 7,2g de NaOH à 1 litre d'une solution de CH₃COOH de concentration égale à 0,3 mol/1?

 $\underline{\text{Donn\'ees}}$: $M_{\text{NaOH}} = 40 \text{ g/mole}, M_{\text{(CH3COOH)}} = 60 \text{ g/mole}, pKa(\text{CH}_3\text{COOH/CH}_3\text{COO}^*) = 4.8.$

EXERCICE II

- √2. Calculer la solubilité de ce composé en mole/L et en g/L
- 3. Peut-on précipiter PbCl₂, si on mélange 10 ml de Pb(NO₃)₂ (0.106 mole/L) et 40 ml de NaCl (2.10 ⁻² mole/l).

<u>Données</u>: Ks (Pb(NO₃)₂) = 4,8 10⁻³ mole³ / 1³; Ks (PbCl₂) = 1,2.10⁻⁵ mole³ / 1³ M (Pb(NO₃)₂) = 331,2 g/mole

EXERCICE III

On réalise la pile suivante : Ni / NiSO₄ [10⁻¹ M] // CdSO₄ [10⁻¹ M] / Cd

- √ 1. Faire le schéma de cette pile
 - 2. Calculer la conductivité spécifique de chaque compartiment
 - 3. Ecrire les réactions d'équilibre aux électrodes et calculer les potentiels correspondants
 - 4. Lorsque la pile débite
 - a- Indiquer, sur le schéma de la pile, la polarité des électrodes, le sens du courant et le déplacement des ions
 - b- Ecrire la réaction globale et calculer la f.e.m.
 - c- Dans quelles conditions la pile s'arrêtera-t-elle de fonctionner?

ENSA -Kénitra-

EXAMEN FINAL DE CHIMIE ORGANIQUE S3

Exercice I

Questions du cours:

- 1- Rappeler la définition de l'activité optique d'une molécule chirale.
- 2- Donner la loi de Biot en explicitant ses termes.

Exercice II

Soit le composé de formule développée brute C8H18.

- 1- Donner la formule topologique de la molécule présentant deux carbones asymétriques.
- 2- Représenter en Fischer les couples d'énantiomères et de diastéréoisomères. Que remarquez vouz ?
- 3- Donner la configuration absolue des carbones asymétriques.

Exercice III

Représenter les conformères du 2-chloroéthanol selon Newman et tracer le diagramme d'énergie potentielle de la molécule en fonction de l'angle de rotation caractéristique (60°) de la liaison C₁-C₂. Justifier votre réponse.

Exercice IV

A- Réattribuer les pKa suivants : 3,8 ; 4,7 ; 4 ,8 ; 2,9 ; 1,68 ; 2,7 aux acides (RCO₂H) correspondants en justifiant votre réponse, classer et interpréter les effets inductifs des groupements R.

B- Donner toutes les formes limites mésomères possibles des molécules suivantes

EXAMEN DE CHIMIE EN SOLUTION SEMESTRE 3 SESSION DE RATTRAPAGE

Exercice I

On dose un litre d'une solution contenant 0.1 mole de NH3 par HF

- 1. Montrer que ce titrage est possible.
- On pose « n »: le nombre de moles d'acide ajouté
 Dresser le tableau de variation des concentrations des différents composés mis en jeu
 au cours du dosage en fonction de n.
- 3. Calculer le pH pour n = 0; n = 0.05; n = 0.1; n = 0.15
- 4. Tracer l'allure de la courbe de dosage.

<u>Données</u>: $pK_a(HF/F) = 3.2$; $pK_a(NH_4^+/NH_3) = 9.2$

Exercice II

A un litre de NaOH de concentration 10^{-4} mole/L, on ajoute 10^{-16} mole soit de Mg⁺² soit de Al⁺³. Sachant que les produits de solubilité des hydroxydes Mg(OH)₂ et Al(OH)₃ sont respectivement 1,5. 10^{-11} mol³.L⁻³ et 1,9. 10^{-33} mol⁴.L⁻⁴

- 1. Quel hydroxyde va précipiter?
- 2. Montrer qu'il n'y aura plus de précipitation si on ajoute 0,999.10⁻⁴ mole d'un acide fort à ce milieu.

Exercice III

On considère une solution contenant des ions dichromates Cr₂O₇²⁻ et des ions cuivreux Cu⁺.

- 1. Ecrire les réactions d'équilibre des couples (Cr₂O₇²⁻/Cr³⁺) et (Cu²⁺/Cu⁺).
- 2. Donner l'expression du potentiel correspondant à chaque équilibre
- 3. Calculer le domaine de pH pour lequel les ions Cr₂O₇ oxydent les ions Cu +.
- 4. Ecrire la réaction globale

<u>Données</u>: $E_1^0 (Cr_2O_7^{2-}/Cr_3^{3+}) = 1.33 \text{ V}$; $E_2^0 (Cu_3^{2+}/Cu_3^{2+}) = 0.15 \text{ V}$

ENSA Kénitra

Année Universitaire 2015-2016

Examen de rattrapage de Chimie Organique S3

Questions de cours

Définir les termes suivants :

√ * isomères

* mélange racémique

√* énantiomères

* composé dextrogyre

Exercice 1

Donner le nom systématique des molécules suivantes et indiquer la numérotation de la chaine principale

Exercice 2

Soit un diester A de formule brute C6H10O6.

- 1. Sachant que la chaine principale de **A** comporte quatre carbones, dont deux carbones sont asymétriques, donner sa structure et son nom.
- 2. Représenter en Fischer le stéréoisomère A1 de configuration relative Thréo.
- 3. Donner la configuration absolue carbones asymétriques de A1. Justifier
- 4. Représenter en Cram A₂ diastéréoisomère de A₁. Déduire sa configuration absolue.
- 5. Compléter la représentation de Newman ci-dessous du stéréoisomère A_1 de pouvoir rotatoire $[\alpha_1] = -16$ °.g-1.ml.dm-1.

- 6. Donner la configuration relative de A2. Justifier votre réponse
- A₁ et A₂ sont-ils dextrogyre ou lévogyre?
- 8 Les composés A1 et A2 sont- ils chiraux? Pourquoi?
- 9. Préciser le nombre de sétéréoisomères du composé A? justifier