

Université Ibn Tofail Ecole Nationale des Sciences Appliquées Kénitra

Algèbre bilinéaire et sesquilinéaire

Chapitre 1 : Espaces préhilbertiens et euclidiens

semestre 3 Classes préparatoires

Pr. ADIL MAJDOUBI

1

Espaces préhilbertiens et euclidiens

1 Produit scalaire et norme associée

1.1 Produit scalaire

Définition 1.1

Soit E un espace vectoriel sur \mathbb{R} . On appelle produit scalaire sur E toute forme bilinéaire symétrique définie positive, c'est-à-dire toute application φ de $E \times E$ dans \mathbb{R} vérifiant :

• φ est bilinéaire. Pour tous réels $\alpha_1, \alpha_2, \beta_1, \beta_2$ et pour tous vecteurs x, x_1, x_2, y, y_1, y_2 de E,

$$\begin{cases} \varphi(\alpha_1 x_1 + \alpha_2 x_2, y) &= \alpha_1 \varphi(x_1, y) + \alpha_2 \varphi(x_2, y) \\ \varphi(x, \beta_1 y_1 + \beta_2 y_2) &= \beta_1 \varphi(x, y_1) + \beta_2 \varphi(x, y_2) \end{cases}$$

- φ est symétrique. $\forall (x, y) \in E^2 \ \varphi(x, y) = \varphi(y, x)$;
- φ est définie. $\forall x \in E \ \varphi(x, x) = 0 \Longrightarrow x = 0$
- φ est positive. $\forall x \in E \ \varphi(x, x) \ge 0$.

Remarques.

- 1. En résumant les deux dérniers points en disant que φ est définie-positive.
- 2. Pour montrer qu'une application φ de $E \times E$ dans $\mathbb R$ est bilinéaire, on peut :
 - montrer d'abord qu'elle est linéaire par rapport à la première variable;
 - puis qu'elle est symétrique, ce qui établit la bilinéarité.

Notation:

- Si φ est un produit scalaire et si $(x, y) \in E^2$, alors le réel $\varphi(x, y)$ est appelé le produit scalaire de deux éléments x et y de E et est noté généralement (x|y) ou $\langle x|y\rangle$ ou x.y.
- En géométrie, on privilégie souvent la notation $\overrightarrow{u} \cdot \overrightarrow{v}$ pour désigner le produit scalaire des deux vecteurs \overrightarrow{u} et \overrightarrow{v} .

L'application :
$$\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$(x, y) \longmapsto \langle x | y \rangle = \sum_{i=1}^{n} x_i y_i$$

où $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$, est un produit scalaire sur \mathbb{R}^n , il est appelé **produit**

scalaire canonique de \mathbb{R}^n . En effet :

• pour tous réels α_1, α_2 et pour tous vecteurs x, x', y de \mathbb{R}^n ,

$$\begin{split} \langle \alpha_1 x + \alpha_2 x' | y \rangle &= \sum_{i=1}^n (\alpha_1 x_i + \alpha_2 x_i') y_i = \sum_{i=1}^n (\alpha_1 x_i y_i + \alpha_2 x_i' y_i) \\ &= \alpha_1 \sum_{i=1}^n x_i y_i + \alpha_2 \sum_{i=1}^n x_i' y_i = \alpha_1 \langle x | y \rangle + \alpha_2 \langle x' | y \rangle, \end{split}$$

donc l'application est linéaire par rapport à la première variable.

• pour tous vecteurs x, y de \mathbb{R}^n ,

$$\langle x|y\rangle = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = \langle y|x\rangle,$$

donc l'application est symétrique.

• pour tout $x \in \mathbb{R}^n$,

$$\langle x|x\rangle = \sum_{i=1}^{n} x_i^2 \ge 0 \text{ et } \langle x|x\rangle = 0 \Longrightarrow x_i = 0, \ \forall i \in \{1, \dots, n\} \Longrightarrow x = 0,$$

d'où l'application est définie-positive.

Exemple 1.2

Soit [a, b] un segment de \mathbb{R} , avec a < b. Posons $E = \mathcal{C}([a, b], \mathbb{R})$ l'ensemble des fonctions numériques continues sur [a, b].

L'application : $E^2 \longrightarrow \mathbb{R}$

$$(f,g) \longmapsto \langle f|g\rangle = \int_a^b f(t)g(t) dt$$

est un produit scalaire sur E. En effet:

- la bilinéarité et la positivité de l'application découle de la linéarité et de la positivité de l'intégrale.
- pour toutes fonctions f, g de E,

$$\langle f|g\rangle = \int_a^b f(t)g(t) dt = \int_a^b g(t)f(t) dt = \langle g|f\rangle,$$

donc l'application est symétrique.

• pour toute fonction f de E,

$$\langle f|f\rangle = \int_a^b f^2(t) dt = 0 \Longrightarrow f = 0,$$

car f^2 est positive et continue, d'où l'application est définie.

Exemple 1.3

L'application : $\mathcal{M}_n(\mathbb{R})^2 \longrightarrow \mathbb{R}$

$$(A,B) \longmapsto \langle A|B\rangle = \sum_{i=1}^{n} \sum_{i=1}^{n} A_{i,j} B_{i,j} = Tr({}^{t}AB)$$

est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$, il est appelé **produit scalaire canonique de** $\mathcal{M}_n(\mathbb{R})$.

Exercice 1.1

Soit $E = \mathbb{R}_2[X]$ et $\varphi : E \times E \longrightarrow \mathbb{R}$ l'application définie par :

$$\forall (P,Q) \in E \times E, \ \varphi(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2).$$

Montrez que φ est un produit scalaire sur E.

Définition 1.2

On appelle **espace préhilbertien** réel tout \mathbb{R} -espace vectoriel muni d'un produit scalaire. Lorsque l'espace vectoriel est de dimension finie, on parle d'**espace vectoriel euclidien**.

1.2 Inégalité de Cauchy-Schwarz

Théorème 1.1

Soit *E* un espace préhilbertien réel dont le produit scalaire est noté $\langle | \rangle$.

$$\forall (x, y) \in E^2 \ \langle x|y \rangle^2 \le \langle x|x \rangle \langle y|y \rangle$$

L'égalité est vérifiée si et seulement si x et y sont colinéaires.

Démonstration.

- Si y = 0, l'inégalité est évidente (c'est une égalité).
- Si $y \neq 0$, observons que $\forall \lambda \in \mathbb{R} \langle x + \lambda y | x + \lambda y \rangle \ge 0$, c'est-à-dire :

$$\langle x|x\rangle + 2\lambda\langle x|y\rangle + \lambda^2\langle y|y\rangle \ge 0 \text{ avec } \langle y|y\rangle > 0$$

On reconnait un trinôme du second degré en λ qui garde un signe constant : il a au plus une racine réelle, son discriminant est donc négatif ou nul :

$$\Delta' = \langle x | y \rangle^2 - \langle x | x \rangle \langle y | y \rangle \le 0,$$

ce qui donne l'inégalité annoncée.

Il reste à montrer que $\langle x|y\rangle^2 = \langle x|x\rangle\langle y|y\rangle \Leftrightarrow x$ et y sont colinéaires :

- \Rightarrow Supposons $\langle x|y\rangle^2 = \langle x|x\rangle\langle y|y\rangle$, soit y=0 et il est colinéaire à x, soit $y\neq 0$ et $\Delta'=0$, le trinome précédent posséde alors une racine double λ_0 , qui vérifie donc $\langle x+\lambda_0y|x+\lambda_0y\rangle=0$ d'où $x+\lambda_0y=0$; x et y sont liés.
- \Leftarrow Réciproquement, si x et y sont liés, il existe un réel λ tel que $y = \lambda x$ ou $x = \lambda y$. Les vecteurs x et y jouant un rôle symétrique, on peut supposer que $y = \lambda x$. Alors :

$$\langle x|y\rangle^2 = \langle x|\lambda x\rangle^2 = \lambda^2 \langle x|x\rangle^2 = \langle x|x\rangle \langle y|y\rangle.$$

Exemple 1.4

Soient $(x_i)_{1 \le i \le n}$ et $(y_i)_{1 \le i \le n}$ deux vecteurs de \mathbb{R}^n . L'inégalité de Cauchy-Schwarz pour le produit scalaire canonique sur \mathbb{R}^n s'écrit :

$$\left| \sum_{i=1}^{n} x_i \, y_i \right| \leq \left(\sum_{i=1}^{n} x_i^2 \right)^{1/2} \left(\sum_{i=1}^{n} y_i^2 \right)^{1/2}.$$

Exemple 1.5

L'inégalité de Cauchy-Schwarz pour le produit scalaire sur $\mathscr{C}([a,b],\mathbb{R})$ défini par :

$$(f,g) \longmapsto \langle f|g\rangle = \int_a^b f(t)g(t) dt$$

s'écrit:

$$\left| \int_a^b f(t) g(t) \, dt \right| \leq \left(\int_a^b f^2(t) \, dt \right)^{1/2} \left(\int_a^b g^2(t) \, dt \right)^{1/2}.$$

Exemple 1.6

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. L'inégalité de Cauchy-Schwarz pour le produit scalaire canonique de $\mathcal{M}_n(\mathbb{R})$ s'écrit :

$$\left|Tr({}^{t}AB)\right| \leq \left(Tr({}^{t}AA)\right)^{1/2} \left(Tr({}^{t}BB)\right)^{1/2}.$$

1.3 Norme euclidienne

Définition 1.3

Dans un espace vectoriel réel E, on appelle norme toute application N de E dans $\mathbb R$ telle que :

- 1. $\forall x \in E \ N(x) \ge 0$;
- 2. $\forall x \in E \ N(x) = 0 \Leftrightarrow x = 0$;
- 3. $\forall k \in \mathbb{R} \ \forall x \in E \ N(kx) = |k|N(x)$;
- 4. $\forall (x, y) \in E^2 \ N(x + y) \le N(x) + N(y)$.

Théorème 12

Soit E un espace préhilbertien réel dont le produit scalaire est noté $\langle | \rangle$.

L'application de E dans \mathbb{R}^+ définie par : $||x|| = \sqrt{\langle x|x\rangle}$ est une norme, appelée norme euclidienne associée au produit scalaire.

Démonstration. Les points 1. et 2. figurent dans la définition du produit scalaire.

3.
$$||kx|| = \sqrt{\langle kx|kx\rangle} = \sqrt{k^2 \langle x|x\rangle} = |k|\sqrt{\langle x|x\rangle}$$

4.
$$||x + y||^2 = \langle x + y | x + y \rangle = \langle x | x \rangle + 2 \langle x | y \rangle + \langle y | y \rangle = ||x||^2 + 2 \langle x | y \rangle + ||y||^2$$
.

D'après l'inégalité de Cauchy-Schwartz on a $\langle x|y\rangle \leq ||x|| ||y||$, donc

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

d'où $||x + y|| \le ||x|| + ||y||$.

(L'égalité est vérifiée si et seulement si x et y sont colinéaires et de même sens.)

Une norme permet de définir une distance :

Définition 1.4

Soit E un espace préhilbertien réel dont le produit scalaire est noté $\langle | \rangle$.

On appelle **distance euclidienne** associée au produit scalaire $\langle | \rangle$ l'application de E^2 dans \mathbb{R}^+ définie par : d(x, y) = ||x - y||.

En utilisant la bilinéarité du produit scalaire, on obtient facilement :

Propriétés

 $\forall (x, y) \in E^2$

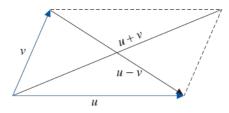
$$||x + y||^2 = ||x||^2 + 2\langle x|y\rangle + ||y||^2 \quad ; \quad ||x - y||^2 = ||x||^2 - 2\langle x|y\rangle + ||y||^2$$
$$\langle x + y|x - y\rangle = ||x||^2 - ||y||^2 \quad ; \quad \langle x|y\rangle = \frac{1}{4} \left(||x + y||^2 - ||x - y||^2 \right)$$

Remarque.

1. En additionnant les deux premières formules, on obtient l'égalité suivante, appelée **égalité du** parallélogramme :

$$\forall (x, y) \in E^2 \quad \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).$$

Cette égalité traduit le fait que, dans un parallélogramme, la somme des carrés des longueurs des deux diagonales est égale à la somme des carrés des longueurs des quatre côtés.



2. La dernière égalité, appelée **identité de polarisation**, offre l'avantage d'exprimer un produit scalaire uniquement en termes de normes. Elle est utilisée pour démontrer des propriétés concernant le produit scalaire à partir de propriétés concernant les normes.

Exercice 1.2

Soit E un espace vectoriel euclidien et f, g, deux endomorphismes de E tels que :

$$\forall x \in E, \|f(x)\| = \|g(x)\|$$

Démontrer que :

$$\forall (x, y) \in E^2, \ \langle f(x)|f(y)\rangle = \langle g(x)|g(y)\rangle.$$

2 Orthogonalité

Soit E un espace préhilbertien réel muni de sa norme euclidienne $\|.\|$ associée.

2.1 Familles orthogonales et orthonormées

Définition 2.1

On appelle vecteur **normé**, ou **unitaire**, tout vecteur de norme 1.

Définition 2.2

On dit que deux vecteurs x et y de E sont orthogonaux si $\langle x|y\rangle=0$. On note alors $x\perp y$.

Remarques.

- Par symétrie du produit scalaire, si $\langle x|y\rangle=0$, alors $\langle y|x\rangle=0$. Ainsi, la relation d'orthogonalité est symétrique.
- Le vecteur nul est orthogonal à tous les autres vecteurs.
- Si un vecteur *x* est orthogonal à lui même, alors il est nul car :

$$||x||^2 = \langle x | x \rangle = 0.$$

• En particulier, le seul vecteur orthogonal à tous les autres vecteurs est le vecteur nul.

Exemple 2.1

Dans \mathbb{R}^n muni du produit scalaire canonique, les vecteurs de la base canonique sont normés et orthogonaux deux à deux.

Exercice 2.1

Montrer que dans l'espace vectoriel des fonctions continues et 2π -périodiques sur \mathbb{R} , muni du produit scalaire :

$$(f,g) \longrightarrow \frac{1}{\pi} \int_0^{2\pi} f(x)g(x) dx,$$

les éléments sin et cos sont unitaires et orthogonaux.

Définition 2.3

On appelle orthogonal d'une partie A de E, l'ensemble noté A^{\perp} défini par :

$$A^{\perp} = \{ x \in E \mid \forall a \in A \ \langle a | x \rangle = 0 \}$$

Proposition 2.1

L'orthogonal d'une partie de *E* est un sous-espace vectoriel de *E*.

Démonstration. Soit *A* une partie de *E*. A^{\perp} est non vide, car $0 \in A^{\perp}$. A^{\perp} est stable par combinaison lineaire, en effet :

$$\forall (x, y) \in (A^{\perp})^2 \ \forall (\alpha, \beta) \in \mathbb{R}^2 \ \forall a \in A \ \langle a | \alpha x + \beta y \rangle = \alpha \langle a | x \rangle + \beta \langle a | y \rangle = 0$$

d'où $\alpha x + \beta y \in A^{\perp}$. A^{\perp} est donc un sous-espace vectoriel de E.

Exemples 2.1

- 1. L'orthogonal de $\{0_E\}$ est E.
- 2. L'orthogonal de E est $\{0_E\}$. En effet :
 - 0_E est orthogonal à tout élément de E,
 - si $x \in E^{\perp}$, alors en particulier x est orthogonal à lui même, ce qui prouve que x est nul.

Remarque. Soit F un sous-espace vectoriel de E. Les espaces vectoriels F et F^{\perp} sont en somme directe car le seul vecteur orthogonal à lui-même est le vecteur nul.

Proposition 2.2

Si A et B sont deux parties de E, alors on a :

$$A \subset B \Longrightarrow B^{\perp} \subset A^{\perp}$$
.

Démonstration. Supposons que $A \subseteq B$. Soit $x \in B^{\perp}$ et $a \in A$. Comme $A \subseteq B$, on a $a \in B$, donc $\langle a | x \rangle = 0$. Ainsi, $x \in A^{\perp}$.

Proposition 2.3

Étant donné une partie A de E, alors $A^{\perp} = (Vect A)^{\perp}$.

Démonstration. On procéde par double inclusion :

- Comme $A \subset VectA$, on a déjà l'inclusion $(VectA)^{\perp} \subset A^{\perp}$.
- Soit $x \in A^{\perp}$. Pour tout $y \in (Vect A)$, il existe des éléments a_1, \ldots, a_p de A et des réels $\lambda_1, \ldots, \lambda_p$ tels que $y = \sum_{i=1}^p \lambda_i a_i$ donc, par bilinéarité du produit scalaire :

$$\langle x|y\rangle = \sum_{i=1}^{p} \lambda_i \langle x|a_i\rangle = 0,$$

ce qui prouve que $x \in (VectA)^{\perp}$. Ainsi, $A^{\perp} \subset (VectA)^{\perp}$.

Proposition 2.4

Soit A, B deux parties de E, F et G deux sous espaces vectoriels de E. On a :

- 1. $A \subseteq A^{\perp \perp}$
- 2. $A^{\perp} + B^{\perp} \subset (A \cap B)^{\perp}$
- 3. $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$

Démonstration.

- 1. Si $x \in A$ alors pour tout $y \in A^{\perp}$, (x|y) = 0 donc $x \in A^{\perp \perp}$, d'où l'inclusion.
- 2. On a : $A \cap B \subset A$ donc $A^{\perp} \subset (A \cap B)^{\perp}$, et de même $B^{\perp} \subset (A \cap B)^{\perp}$, et puisque $(A \cap B)^{\perp}$ est un sous espace vectoriel, $A^{\perp} + B^{\perp} \subset (A \cap B)^{\perp}$.

3. D'une part, $F \subset F + G$ et $G \subset F + G$ entraînent $(F + G)^{\perp} \subset F^{\perp}$ et $(F + G)^{\perp} \subset G^{\perp}$ d'où $(F + G)^{\perp} \subset F^{\perp} \cap G^{\perp}$. D'autre part, si $x \in F^{\perp} \cap G^{\perp}$ alors pour tout $z \in F + G$, il existe $(u, v) \in F \times G$ tel que z = u + v et donc (x|z) = (x|u) + (x|v) = 0 d'où $x \in (F + G)^{\perp}$ et donc l'inclusion réciproque est établie.

Exercice 2.2

Montrer que $(A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$.

Définition 2.4

- On appelle **famille orthogonale** de *E* toute famille de vecteurs de *E* deux à deux orthogonaux.
- On appelle **famille orthonormée** (ou **orthonormale**) de *E* toute famille de vecteurs de *E* normés et deux à deux orthogonaux.

Exemple 2.2

Dans \mathbb{R}^n muni de son produit scalaire canonique, la base canonique est une famille orthonormée.

Proposition 2.5

Toute famille orthogonale de vecteurs non nuls de E est libre. En particulier, toute famille orthonormée de E est libre.

Démonstration. Soit (e_1,\ldots,e_p) une famille orthogonale de vecteurs non nuls de E et une famille de réels $(\lambda_1,\ldots,\lambda_p)$ telle que $\sum_{i=1}^p \lambda_i e_i = 0$. Pour tout $k \in [1;p]$, on a :

$$\langle \sum_{i=1}^{p} \lambda_i e_i | e_k \rangle = \sum_{i=1}^{p} \lambda_i \langle e_i | e_k \rangle = \lambda_k \| e_k \|^2 = 0$$

Le vecteur e_k étant non nul, on en déduit que $\lambda_k = 0$. Donc la famille (e_1, \dots, e_p) est libre. Comme une famille orthonormée est orthogonale et composée de vecteurs non nuls, elle est libre.

© Remarque. Une famille de vecteurs (orthogonaux) n'est pas libre si elle contient le vecteur nul. L'hypothèse de non nullité est donc fondamentale.

Proposition 2.6 (Théorème de Pythagore)

Deux vecteurs x et y de E sont orthogonaux si, et seulement si, l'on a :

$$||x + y||^2 = ||x||^2 + ||y||^2$$
.

Démonstration. Conséquences de $||x+y||^2 = ||x||^2 + 2\langle x|y\rangle + ||y||^2$ et de la définition de l'orthogonalité.

Remarque. On retrouve le résultat bien connu suivant : trois points A, B et C forment un triangle rectangle en A si, et seulement si :

$$\|\overrightarrow{BC}\|^2 = \|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2.$$

Proposition 2.7

Si $(x_1, x_2, ..., x_n)$ est une famille orthogonale de vecteurs de E, on a :

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2.$$

Démonstration. Par bilinéarité du produit scalaire, on a :

$$\left\langle \sum_{i=1}^{n} x_i | \sum_{i=1}^{n} x_i \right\rangle = \sum_{1 \le i, j \le n}^{n} \left\langle x_i | x_j \right\rangle = \sum_{i=1}^{n} \left\langle x_i | x_i \right\rangle,$$

puisque $\langle x_i | x_i \rangle = 0$ si $i \neq j$.

Théorème 2.1 (Algorithme d'orthonormalisation de Gram-Schmidt)

Soit $(e_1,...,e_n)$ une famille libre de E. Alors il existe une famille orthonormée $(f_1,f_2,...,f_n)$ de E telle que :

$$\forall p \in [1; n] \ Vect(e_1, e_2, ..., e_p) = Vect(f_1, f_2, ..., f_p).$$

Démonstration. Procédons par récurrence sur p en cherchant un vecteur orthogonal aux vecteurs f_1, f_2, \ldots, f_p de la forme $g_{p+1} = e_{p+1} - \sum_{i=1}^p \lambda_i f_i$.

Construisons la famille $(f_1, f_2, ..., f_n)$ par récurrence.

- Le vecteur f_1 doit être un vecteur normé colinéaire à e_1 . Il suffit de prendre $f_1 = \frac{e_1}{\|e_1\|}$, ce qui est possible car, la famille (e_1, \dots, e_n) étant libre, le vecteur e_1 est non nul.
- Supposons que pour un certain $p \in [1; n-1]$, on ait construit une famille orthonormée $(f_1, f_2, ..., f_p)$ telle que :

$$\forall k \in [1; p] \ Vect(e_1, e_2, ..., e_k) = Vect(f_1, f_2, ..., f_k).$$

Comme $Vect(e_1,e_2,\ldots,e_p)=Vect(f_1,f_2,\ldots,f_p)$, tout vecteur de $Vect(e_1,e_2,\ldots,e_{p+1})$ peut s'écrire comme combinaison linéaire de f_1,f_2,\ldots,f_p et e_{p+1} . Cherchons donc g_{p+1} orthogonal aux vecteurs f_1,f_2,\ldots,f_p sous la forme :

$$g_{p+1} = e_{p+1} - \sum_{i=1}^{p} \lambda_i f_i.$$

Le vecteur g_{p+1} répond au problème si, et seulement si :

$$\forall j \in [1; p] \quad 0 = \langle f_j | g_{p+1} \rangle = \langle f_j | e_{p+1} \rangle - \lambda_j.$$

En posant:

$$g_{p+1} = e_{p+1} - \sum_{i=1}^{p} \langle f_i | e_{p+1} \rangle f_i.$$

on obtient donc un vecteur g_{p+1} orthogonal aux vecteurs f_1, f_2, \ldots, f_p et appartenant à $Vect(e_1, e_2, \ldots, e_{p+1})$.

Le vecteur g_{p+1} est non nul puisque, la famille $(e_1, e_2, ..., e_n)$ étant libre, on a :

$$e_{p+1} \notin Vect(e_1, e_2, ..., e_p) = Vect(f_1, f_2, ..., f_p)$$

et l'on peut donc le normer en posant $f_{p+1} = \frac{g_{p+1}}{\|g_{p+1}\|}$.

La famille (f_1,f_2,\ldots,f_{p+1}) est alors une famille orthonormée (donc libre) de p+1 vecteurs de $Vect(e_1,e_2,\ldots,e_{p+1})$. Elle en est donc une base et l'on a :

$$Vect(f_1, f_2, ..., f_{p+1}) = Vect(e_1, e_2, ..., e_{p+1}).$$

Remarques.

• À partir d'une famille libre $(e_1, e_2, ..., e_n)$ de E, l'algorithme de Gram-Schmidt donne une famille orthonormée $(f_1, f_2, ..., f_n)$ telle que, pour tout $p \in [1; n]$:

$$\langle e_p|f_p\rangle > 0$$
 et $Vect(e_1,e_2,\ldots,e_p) = Vect(f_1,f_2,\ldots,f_p)$.

En effet, si pour tout $p \in [1; n]$, on note $g_p = e_p - \sum_{k=1}^{p-1} \langle e_p | f_k \rangle f_k$, on a $f_p = \frac{g_p}{\|g_p\|}$ et donc

 $0 < \langle f_p | g_p \rangle = \langle f_p | e_p \rangle$ car le vecteur f_p est orthogonal aux vecteurs f_1, \dots, f_{p-1} .

- Si les premiers vecteurs de la famille $(e_1, e_2, ..., e_n)$ forment une famille orthonormale, alors il est immédiat de voir que ce procédé les conserve.
- On peut généraliser le résultat au cas d'une famille infinie indexée par \mathbb{N} . Soit $\mathscr{F} = (e_n)_{n \in \mathbb{N}}$ une famille libre de E, c'est-à-dire telle que (e_0, \ldots, e_n) soit libre pour tout $n \in \mathbb{N}$. Il existe une famille orthonormée $(f_n)_{n \in \mathbb{N}}$ de E telle que :

$$\forall p \in \mathbb{N} \ Vect(e_0, e_1, \dots, e_p) = Vect(f_0, f_1, \dots, f_p).$$

2.2 Bases orthonormées

Soit E un espace euclidien de dimension n.

Définition 2.5

On appelle **base orthonormée** (ou **base orthonormale**) de E toute base de E qui est une famille orthonormée.

En particulier, si F un sous-espace vectoriel de E, on appelle base orthonormée de F toute base de F qui est aussi une famille orthonormée.

Proposition 2.8

Soit $(e_1, ..., e_n)$ une base de E. Il existe alors une base orthonormée $(f_1, f_2, ..., f_n)$ de E telle que :

$$\forall p \in [1; n] \ Vect(e_1, e_2, ..., e_n) = Vect(f_1, f_2, ..., f_n).$$

Démonstration. La famille obtenue par l'algorithme d'orthonormalisation de Gram-Schmidt est orthonormée donc libre et possède n éléments dans un espace vectoriel E de dimension n. C'est donc une base de E.

Corollaire 2.1

Tout espace euclidien possède une base orthonormée.

 $D\acute{e}monstration$. Conséquence du fait que tout espace vectoriel de dimension finie admet une base et de la proposition précédente.

Exemple 2.3

Soient E un espace euclidien de dimension 2 et $\mathcal{B}_2 = (u_1, u_2)$ une base de E. Orthonormalisons la base \mathcal{B}_2 :

- Posons $e_1 = \frac{u_1}{\|u_1\|}$,
- $e'_2 = u_2 \langle e_1 | u_2 \rangle e_1 \implies e_2 = \frac{e'_2}{\|e'_2\|}$.

Donc (e_1, e_2) est une base orthonormale de E.

Exemple 2.4

Soient E un espace euclidien de dimension 3 et $\mathcal{B}_3 = (u_1, u_2, u_3)$ une base de E. Orthonormalisons la base \mathcal{B}_3 :

- Posons $e_1 = \frac{u_1}{\|u_1\|}$,
- $e'_2 = u_2 \langle e_1 | u_2 \rangle e_1 \implies e_2 = \frac{e'_2}{\|e'_2\|}$.
- $e_3' = u_3 \langle e_1 | u_3 \rangle e_1 \langle e_2 | u_3 \rangle e_2 \implies e_3 = \frac{e_3'}{\|e_3'\|}$

Donc (e_1, e_2, e_3) est une base orthonormale de E.

Exemple 2.5

 \mathbb{R}^3 est muni de son produit scalaire canonique. Orthonormalisons la base :

$$u_1 = (1, 1, 0)$$
; $u_2 = (1, 0, 1)$; $u_3 = (0, 1, 1)$

- Posons $e_1 = \frac{u_1}{\|u_1\|} = \frac{u_1}{\sqrt{2}} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0),$
- $e'_2 = u_2 \langle e_1 | u_2 \rangle e_1 = u_2 \frac{1}{\sqrt{2}} e_1 = (\frac{1}{2}, -\frac{1}{2}, 1) \implies \|e'_2\| = \frac{\sqrt{6}}{2}.$ Posons $e_2 = \frac{e'_2}{\|e'_2\|} = (\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}).$
- $e_3' = u_3 \langle e_1 | u_3 \rangle e_1 \langle e_2 | u_3 \rangle e_2 = u_3 \frac{1}{\sqrt{2}} e_1 \frac{1}{\sqrt{6}} e_2 = \frac{2}{3} (-1, 1, 1) \implies ||e_3'|| = \frac{2}{\sqrt{3}}.$ Posons $e_3 = \frac{e_3'}{||e_3'||} = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}).$

Donc (e_1, e_2, e_3) est une base orthonormale de \mathbb{R}^3 .

Proposition 2.9

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E.

- 1. Si x est un vecteur de E, alors on a $x = \sum_{i=1}^{n} \langle x | e_i \rangle e_i$.
- 2. Si $x = \sum_{i=1}^{n} x_i e_i$ et $y = \sum_{i=1}^{n} y_i e_i$ sont deux vecteurs de E, alors on a :

$$\langle x|y\rangle = \sum_{i=1}^{n} x_i y_i = {}^{t} XY$$
 et $||x||^2 = \sum_{i=1}^{n} x_i^2 = {}^{t} XX$,

où X et Y sont les matrices colonnes constituées des composantes dans la base \mathscr{B} des vecteurs x et y.

Démonstration.

1. Soit $x = \sum_{i=1}^{n} x_i e_i$. Comme la base \mathcal{B} est orthonormée, la linéarité à gauche du produit scalaire donne :

$$\forall i \in [1; n] \ \langle x|e_i \rangle = \langle \sum_{k=1}^n x_k e_k | e_i \rangle = \sum_{k=1}^n x_k \langle e_k | e_i \rangle = x_i.$$

Donc
$$x = \sum_{i=1}^{n} \langle x | e_i \rangle e_i$$
.

2. Soit $x = \sum_{i=1}^{n} x_i e_i$ et $y = \sum_{i=1}^{n} y_i e_i$ sont deux vecteurs de E. Comme la base \mathscr{B} est orthonormée, la bilinéarité du produit scalaire donne :

$$\langle x|y\rangle = \langle \sum_{i=1}^{n} x_i e_i | \sum_{j=1}^{n} y_j e_j \rangle = \sum_{1 \le i, j \le n} x_i y_j \langle e_i | e_j \rangle = \sum_{i=1}^{n} x_i y_i = {}^t XY$$

et
$$||x||^2 = \sum_{i=1}^n x_i^2 = {}^t XX.$$

Pemarque. Soit $\mathcal{B} = (e_1, ..., e_n)$ une base orthogonale de E. La famille $(\frac{e_1}{\|e_1\|}, ..., \frac{e_n}{\|e_n\|})$ étant une base orthonormée, on obtient les résultats suivants :

- 1. Si x est un vecteur de E, alors on a $x = \sum_{i=1}^{n} \frac{\langle x | e_i \rangle}{\|e_i\|^2} e_i$.
- 2. Si $x = \sum_{i=1}^{n} x_i e_i$ et $y = \sum_{i=1}^{n} y_i e_i$ sont deux vecteurs de E, alors on a :

$$\langle x|y\rangle = \sum_{i=1}^{n} x_i y_i \|e_i\|^2$$
 et $\|x\|^2 = \sum_{i=1}^{n} x_i^2 \|e_i\|^2$.

2.3 Forme linéaire sur un espace vectoriel euclidien

La structure d'espace vectoriel euclidien permet de représenter une forme linéaire par un vecteur unique.

Théorème 2.2 (Représentation de Riesz)

Soit E un espace vectoriel euclidien. Pour toute forme linéaire $f \in \mathcal{L}(E, \mathbb{R})$, il existe un vecteur $a \in E$ unique tel que :

$$\forall x \in E \ f(x) = \langle a | x \rangle.$$

Démonstration. À tout a de E on peut associer la forme linéaire

$$\theta_a \colon E \longrightarrow \mathbb{R}$$

$$x \longmapsto \langle a|x \rangle.$$

L'application $\theta \colon E \longrightarrow \mathcal{L}(E,\mathbb{R})$ est linéaire. Son noyau est : $a \longmapsto \theta_a$

$$Ker\theta = \{a \in E, \ \forall x \in E \ \langle a|x \rangle = 0\} = E^{\perp} = \{0\}$$

 θ est donc injective et comme $dimE = dim\mathcal{L}(E,\mathbb{R})$, elle est bijective.

 θ est un isomorphisme de E dans $\mathcal{L}(E,\mathbb{R})$.

Toute forme linéaire f a donc un antécédent unique par cet isomorphisme, c'est-à-dire un vecteur a tel que pour tout $x \in E$ $f(x) = \langle a | x \rangle$.

Exemple 2.6

C'est ce théorème qui permet de représenter un hyperplan H, noyau d'une forme linéaire non nulle, par un vecteur normal n: pour tout $x \in E$,

$$x \in H \iff \langle x | n \rangle = 0.$$

Remarque. Le résultat de ce théorème n'est plus nécessairement vrai en dimension infinie.

Exemple 2.7

Soit $E = \mathbb{R}[X]$, muni du produit scalaire défini par $(P|Q) = \int_0^1 P(x)Q(x) dx$.

Soit $F = \{P \in \mathbb{R}[X]/P(0) = 0\}$. F n'admet aucun vecteur orthogonal non nul car pour tout $Q \in F^{\perp}$ on a $XQ \in F$ et donc (Q|XQ) = 0 donc $\int_0^1 xQ(x)^2 dx = 0$ par continuité et positivité de $xQ(x)^2$ on obtient; pour tout $x \in]0,1]$, Q(x) = 0 et donc Q = 0.

3 Projection orthogonale sur un sous espace de dimension finie

Soit E un espace vectoriel préhilbertien muni de sa norme euclidienne || ||.

3.1 Supplémentaire orthogonal

Proposition 3.1

Si F est un sous-espace vectoriel de dimension finie de E, alors F et F^{\perp} sont supplémentaires :

$$F \oplus F^{\perp} = E$$

Le sous-espace vectoriel F^{\perp} est appelé le **supplémentaire orthogonal** de F.

 $D\'{e}monstration.$ Soit (e_1,\ldots,e_p) une base orthonormale de F. Pour tout vecteur x de E, le vecteur $x-\sum_{i=1}^p\langle x|e_i\rangle e_i$ est orthogonal à chaque vecteur e_i ; il appartient donc à F^\perp . On en déduit que $E=F+F^\perp$.

De plus, pour tout $x \in F \cap F^{\perp}$, $\langle x | x \rangle = 0$, d'où x = 0. on a donc $F \cap F^{\perp} = \{0\}$, et par conséquent $F \oplus F^{\perp} = E$. Les sous-espaces F et F^{\perp} sont supplémentaires.

Remarque.

- Soit *E* de dimension finie. Un sous-espace vectoriel *F* de *E* n'admet, en général, pas un unique supplémentaire. En revanche, il admet un unique supplémentaire orthogonal.
- Soit *E* de dimension infinie. Un sous-espace vectoriel *F* de *E* n'admet pas forcément de supplémentaire orthogonal.

Exemple 3.1

Dans l'exemple (2.7), $E = \mathbb{R}[X]$ est un espace vectoriel de dimension infinie, muni du produit scalaire défini par $(P|Q) = \int_0^1 P(x)Q(x)\,dx$. Pour le sous espace vectoriel $F = \{P \in E/P(0) = 0\}$, on a montré que $F^{\perp} = \{0\}$. Comme $E \neq F$, on n'a pas $F \oplus F^{\perp} = E$.

Corollaire 3.1

Si *F* est un sous-espace vectoriel de *E* et si *E* est de dimension finie, alors :

- 1. $\dim F + \dim F^{\perp} = \dim E$,
- 2. $(F^{\perp})^{\perp} = F$.

Démonstration.

- 1. Comme E est de dimension finie, F l'est également et donc F et F^{\perp} sont supplémentaires, ce qui implique l'égalité souhaitée.
- 2. Par définition, tout élément de F est orthogonal à tout élément de F^{\perp} ce qui prouve que $F \subset (F^{\perp})^{\perp}$. Comme :

$$\dim(F^{\perp})^{\perp} = \dim E - \dim F^{\perp} = \dim F,$$

on en déduit que $F = (F^{\perp})^{\perp}$.

Exemple 3.2

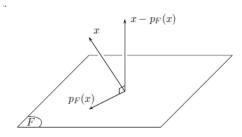
En dimension finie, le supplémentaire orthogonal d'un hyperplan est donc une droite, et le supplémentaire orthogonal d'une droite, un hyperplan.

3.2 Projection orthogonale

Définition 3.1

Soit F un sous-espace vectoriel de dimension finie de E. On appelle projection orthogonale sur F, la projection sur F parallélement à son supplémentaire orthogonal F^{\perp} . L'image d'un vecteur x par cette projection est appelée le projeté orthogonal de x sur F.

Notation F désigne un sous espace vectoriel de dimension finie de E et p_E est la projection orthogonale sur F. À tout vecteur x de E qui se décompose en : $x = x_1 + x_2$ avec $x_1 \in F$, $x_2 \in F^{\perp}$, on a $p_F(x) = x_1$.



Remarque. Pour tout $x \in E$, $p_F(x)$ est l'unique élément de F vérifiant $x - p_F(x) \in F^{\perp}$.

Proposition 3.2 (Inégalité de Bessel)

Soit F est un sous-espace vectoriel de E de dimension finie et p_F la projection orthogonale sur *F*. On a alors:

$$\forall x \in E, \ \|p_F(x)\| \le \|x\|.$$

Avec égalité si et seulement si $x \in F$.

Démonstration. Soit $x \in E$. On a $x = \underbrace{p_F(x)}_{\in F} + \underbrace{x - p_F(x)}_{\in F^{\perp}}$ donc, d'après le théorème de Pythagore, on a $\|x\|^2 = \|p_F(x)\|^2 + \|x - p_F(x)\|^2 \ge \|p_F(x)\|^2$. Les quantités considérées étant

positives, on en déduit l'inégalité souhaitée.

Démontrer qu'une projection sur F vérifiant l'inégalité de Bessel est une projection orthogonale.

Proposition 3.3

Soit $\mathcal{B} = (e_1, e_2, \dots, e_p)$ une base orthonormée d'un sous-espace vectoriel F de E. Le projeté orthogonal sur F d'un vecteur x de E est :

$$p_F(x) = \sum_{i=1}^p \langle x | e_i \rangle e_i.$$

Démonstration. Décomposons $p_F(x)$ dans la base \mathscr{B} :

$$p_F(x) = \sum_{i=1}^p \lambda_i e_i.$$

Comme $x - p_F(x) \in F^{\perp}$, on en déduit que pour tout $i \in [1, p]$, on a :

$$\langle e_i|x\rangle = \langle e_i|x - p_F(x)\rangle + \langle e_i|p_F(x)\rangle = \langle e_i|p_F(x)\rangle = \langle e_i|\sum_{k=1}^p \lambda_k e_k\rangle = \lambda_i,$$

ce qui donne le résultat.

Exemple 3.3

Si a est un vecteur normé, la proposition précédente nous donne l'expression de la projection orthogonale $p_{\mathbb{R}a}$ sur la droite vectorielle $\mathbb{R}a$:

$$p_{\mathbb{R}a}: \quad E \longrightarrow \mathbb{R}$$
$$x \longmapsto \langle x | a \rangle a.$$

Si le vecteur *a* n'est pas normé, on le norme pour obtenir :

$$p_{\mathbb{R}a}(x) = \frac{\langle x|a\rangle}{\|a\|^2}a.$$

Exemple 3.4

Si H est un hyperplan d'un espace vectoriel E de dimension finie, alors il existe un vecteur non nul a tel que $H = (\mathbb{R}a)^{\perp}$. On a donc $Id_E = p_H + p_{\mathbb{R}a}$. Pour obtenir la projection orthogonale sur H d'un vecteur, il suffit donc de lui retirer sa projection orthogonale sur H^{\perp} , c'est-à-dire :

$$\forall x \in E, \ p_H(x) = x - \frac{(x|a)}{\|a\|^2} a.$$

De facon général, si F et F^{\perp} sont supplémentaires, alors $Id_E = p_F + p_{F^{\perp}}$. Ainsi, si on connait p_F , alors on connait $p_{F^{\perp}}$.

Proposition 3.4

Soit F un sous espace vectoriel de dimension finie engendrée par une famille $(e_1, e_2, ..., e_p)$. Étant donnés deux vecteurs x et y de E, on a :

$$y = p_F(x) \Longleftrightarrow \left\{ \begin{array}{l} y \in F \\ \forall i \in [1, p] \quad \langle x - y | e_i \rangle = 0. \end{array} \right.$$

Démonstration.

 \implies Si $y = p_F(x)$, alors $y \in F$ et $x - y \in F^{\perp}$. Ainsi, pour tout $i \in [1, p]$, on a $\langle x - y | e_i \rangle = 0$.

 $\iff \text{R\'eciproquement, supposons } y \in F \text{ et } \forall i \in [\![1,p]\!] \ \langle x-y|e_i\rangle = 0.$ On a alors $x-y \in Vect(e_1,e_2,\ldots,e_p)^\perp = F^\perp$, d'où $x=\underbrace{y}_{\in F} +\underbrace{x-y}_{\in F^\perp}$. Comme $E=F\oplus F^\perp$, on en déduit que $y=p_F(x)$.

Remarque. Pour trouver le projeté orthogonal d'un vecteur x sur un sous-espace vectoriel $F = Vect(e_1, e_2, ..., e_p)$ de dimension finie, sans avoir à déterminer une base orthonormée de F, il suffit de résoudre le système obtenu en traduisant les égalités $\langle x - y | e_i \rangle = 0$ sur les coordonnées de y.

Exemple 3.5

Déterminons la projection orthogonale du polynôme X^3 sur $\mathbb{R}_2[X]$ pour le produit scalaire :

$$\varphi: (P,Q) \mapsto \int_0^1 P(x)Q(x) dx.$$

Soit P le projeté orthogonal du polynôme X^3 sur $\mathbb{R}_2[X]$, on a $P(X) = aX^2 + bX + c$. Le polynôme P doit vérifier :

$$\langle X^3 - P|1 \rangle = \langle X^3 - P|X \rangle = \langle X^3 - P|X^2 \rangle = 0,$$

ce qui se traduit par le système suivant :

$$\begin{cases} 4a + 6b + 12c = 3\\ 15a + 20b + 30c = 12\\ 12a + 15b + 20c = 10. \end{cases}$$

L'opération élémentaire $L_2 \leftarrow L_1 + L_3 - L_2$ donne le système équivalent suivant :

$$\begin{cases} 4a+6b+12c = 3\\ a+b+2c = 1\\ 12a+15b+20c = 10. \end{cases}$$

ce qui conduit au système suivant :

$$\begin{cases} a+b+2c = 1 \\ 2b+4c = -1 \\ 3b-4c = -2. \end{cases}$$

On obtient ainsi $P(X) = \frac{30X^2 - 12X + 1}{20}$.

3.3 Distance à un sous-espace vectoriel

Définition 3.2

Soit B est une partie non vide de E et a un point de E. On appelle distance de a à B la quantité :

$$d(a,B) = \inf_{x \in B} \|a - x\|.$$

L'existence de cette quantite d(a,B) vient du fait que $\{d(a,b);\ b\in B\}$ est une partie non vide de $\mathbb R$ minorée par 0.

Proposition 3.5

Soit F est un sous-espace vectoriel de dimension finie de E, p_F la projection orthogonale sur F et x un vecteur de E. La distance du vecteur x à F est atteinte en un unique point de F, à savoir $p_F(x)$. Autrement dit :

- 1. $d(x, F) = ||x p_F(x)||$;
- 2. $\forall y \in E \ d(x, F) = ||x y|| \iff y = p_F(x)$.

Démonstration.

1. Soit $x \in E$ et $y \in F$. On a :

$$x - y = x - p_F(x) + p_F(x) - y$$
 avec $\langle x - p_F(x) | p_F(x) - y \rangle = 0$,

et donc, d'après le théorème de Pythagore, on a :

$$||x - y||^2 = ||x - p_F(x)||^2 + ||p_F(x) - y||^2 \ge ||x - p_F(x)||^2$$

Par conséquent, $d(x,F) = \inf_{y \in F} \|x - y\| \ge \|x - p_F(x)\|$ et puisque, $p_F(x)$ étant dans F, on a aussi $d(x,F) \le \|x - p_F(x)\|$, donc $d(x,F) = \|x - p_F(x)\|$.

- 2. $d(x,F) = \|x-y\| \iff \|x-y\|^2 = \|x-p_F(x)\|^2 \iff \|y-p_F(x)\|^2 = 0 \iff y = p_F(x)$, donc $p_F(x)$ est l'unique élément de F où la distance est atteinte.
- **Remarques.** Soit F un sous espace vectoriel de dimension finie de E. Pour tout $x \in E$,
 - 1. $||x p_F(x)||^2 = ||x||^2 ||p_F(x)||^2$,
 - 2. $d(x, F^{\perp}) = ||p_F(x)||$,
 - 3. Si H est un hyperplan de E de vecteur normal $u \in E \{0\}$, alors pour tout

$$x \in E, \ p_H(x) = x - \frac{(x|u)}{\|u\|^2}u,$$

et donc la distance de x à H est

$$d(x, H) = ||x - p_H(x)|| = \frac{|(x|u)|}{||u||}.$$

Calculer
$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^{2\pi} (x - a\cos x - b\sin x)^2 dx.$$

3.4 Familles totales

Définition 3.3

Une suite $(e_n)_{n\in\mathbb{N}}$ d'éléments de E est dite totale si $vect\{e_n, n\in\mathbb{N}\}$ est dense dans E.

Théorème 3.1

Soit $(e_n)_{n\in\mathbb{N}}$ une suite totale orthonormée. On note $F_n = vect\{e_k/0 \le k \le n\}$ et p_n la projection orthogonale sur F_n . Alors pour tout $x \in E, x = \lim_{n \to +\infty} p_n(x)$, en d'autres termes :

$$x = \sum_{k=0}^{+\infty} (e_k | x) e_k.$$

Démonstration. La densité de $vect\{e_n, n \in \mathbb{N}\}$ dans E, entraı̂ne pour tout $\varepsilon > 0$, l'existence d'un entier $N \in \mathbb{N}$ et, $y \in F_N$ tel que $\|x - y\| \le \varepsilon$. On a pour tout $n \in \mathbb{N}$, si $n \ge N$ alors $y \in F_n$ donc pour tout $n \ge N$, $\|x - p_n(x)\| = d(x, F_n) \le \|x - y\| \le \varepsilon$, par suite $\|x - p_n(x)\|$ tend vers 0 quand n tend vers l'infini. □

Corollaire 3.2 (Identité de Parseval)

Soit $(e_n)_{n\in\mathbb{N}}$ une suite orthonormée totale de E (dite aussi base hilbertienne). Pour tout $x\in E, \|x\|^2 = \sum_{n\in\mathbb{N}} (x|e_n)^2$.

Démonstration. On a : $\|x-p_n(x)\|^2 = \|x\|^2 - \|p_n(x)\|^2 \operatorname{car} x - p_n(x)$ et $p_n(x)$ sont orthogonaux, et on a $\|p_n(x)\|^2 = \sum_{k=0}^n (x|e_k)^2$ d'où

$$||x||^2 = \lim_n ||p_n(x)||^2 = \sum_{n \in \mathbb{N}} (x|e_n)^2.$$