UNIVERSITE IBN TOFAIL ECOLE NATIONALE DES SCIENCES APPLIQUEES Cycle Intégré Préparatoire aux Formations d'Ingénieurs

Année Universitaire 2020/2021

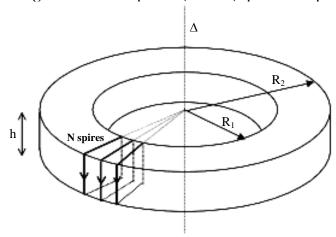
Electromagnétisme et Electrocinétique des courants alternatifs

T.D N° 4: Induction mutuelle et auto-induction

(Les exercices supplémentaires seront traités comme Devoir Libre)

Exercice 4.1.

Sur un tore circulaire à section rectangulaire (rayon intérieur R_1 , rayon extérieur R_2 , hauteur h) sont enroulés N tours de fils régulièrement répartis (N >> 1), parcouru par un courant d'intensité I.



- **4.1.1-** Quelles sont les propriétés de symétrie et d'invariances de cette distribution de courant? Quelle est la forme des lignes de champ du champ magnétique passant par un point *M* quelconque situé à l'intérieur du tore?
 - **4.1.2-** Calculer le champ magnétique créé à l'intérieur et à l'extérieur lorsque le tore.
 - **4.1.3-** Calculer l'auto-inductance L du tore en utilisant la définition ($\Phi_{totale}(\vec{B}) = L.I = \iint_{(S)} \vec{B}.\vec{dS}$) puis

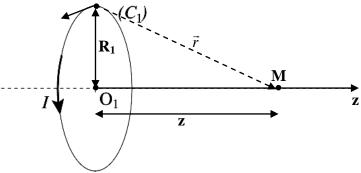
en utilisant l'énergie magnétique ($W = \frac{1}{2}LI^2 = \frac{1}{2\mu_0} \iiint_{(V)} \vec{B}^2 . dV$).

4.1.4- Un fil rectiligne infini est placé sur l'axe du tore. Calculer le coefficient d'induction mutuelle M entre le fil et le tore.

Exercice 4.2. (Contrôle de rattrapage 2012-2013)

On considère une spire circulaire (C_1) de rayon R_1 , de centre O_1 , d'axe (O_1z), parcourue par un courant d'intensité I. Soit un point M de son axe (O_1z) (figure ci-contre).

4.2.1- A l'aide des propriétés de symétries, montrez que le champ magnétique $\overrightarrow{B}(M)$ créé par la spire (C_1) est porté par l'axe (O_1z).

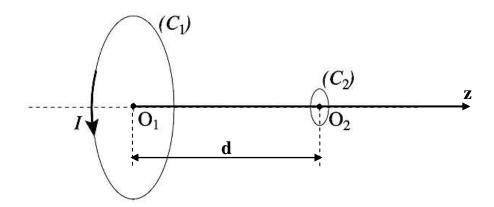


4.2.2- A l'aide de la loi de Biot et Savart. Déterminer le champ $\vec{B}(M)$ en un point M(0,0,z) de l'axe (O_1z) , montrer qu'il peut s'écrire sous la forme : $\vec{B}(M) = I.f(z)\vec{u}$.

Où \vec{u} est un vecteur unitaire que l'on définira et $f(z) = \frac{\mu_0 R_1^2}{2(z^2 + R_1^2)^{\frac{3}{2}}}$.

Une autre spire conductrice (C_2), de rayon R_2 et de centre O_2 , est placée parallèlement à (C_2) et ont le même axe (*figure ci-dessous*). (C_2) est suffisamment petite pour que le champ magnétique

 \vec{B} créé par le courant I circulant dans (C_1) soit supposé uniforme au voisinage de (C_2). (C_2) n'est pas alimentée par un générateur électrique et sa résistance est R.



4.2.3- Dans cette question les spires (C_1) et (C_2) sont fixes et distantes de $d = O_1O_2$. Le courant dans (C_1) est constant ($I = I_0$).

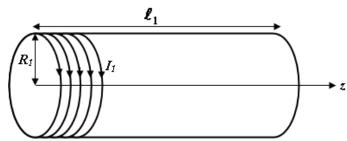
Calculer le flux $\Phi_{1\to 2}$ de \vec{B} crée par (C_1) à travers la surface de (C_2) puis calculer l'inductance mutuelle $M = M_{21} = M_{12}$ entre (C_1) et (C_2) en fonction de f(d) et R_2 .

Dans la suite de l'exercice les spires (C_1) et (C_2) sont toujours fixes et distantes de $d = O_1O_2$. Le courant dans (C_1) est variable dans le temps $I(t) = I_0 sin(\omega t)$.

- **4.2.4-** Calculer le flux $\Phi_{1\to 2}$ de \vec{B} crée par (C_1) à travers la surface de (C_2).
- **4.2.5-** En utilisant la loi de Faraday $e = -\frac{d\Phi}{dt}$, déterminer la f.é.m induite e(t) dans (C_2) .
- **4.2.6-** Déterminer le courant induit $i_2(t)$ dans la spire (C_2).

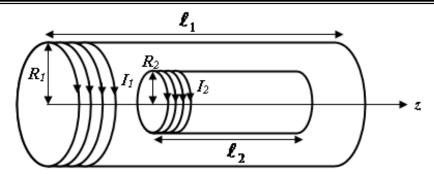
Exercice 4.3. Contrôle continu 2012-2013

Un solénoïde cylindrique d'axe z'z, de rayon R_1 et de longueur ℓ_1 supposé infini ($\ell_1 >> R_1$), comportant N_1 spires par unité de longueur, est parcouru par un courant constant d'intensité I_1 (figure ci-dessous). On admet que le champ magnétique \vec{B}_1 produit par le solénoïde est nul à l'extérieur ($r > R_1$).



- **4.3.1-** En utilisant le théorème d'Ampère, montrer que le champ magnétique à l'intérieur du solénoïde ($\mathbf{r} < \mathbf{R}_1$) est <u>uniforme</u> et égal à : $\vec{B}_1 = \mu_0 N_1 I_1 \vec{e}_z$ (Tracer les contours utilisés).
- **4.3.2-** Calculer le flux de \vec{B}_1 à travers une spire du solénoïde. En déduire le flux total à travers le solénoïde.
 - **4.3.3-** Déterminer l'auto-inductance L_1 du solénoïde en fonction de μ_0 , N_1 , ℓ_1 , R_1 .
- **4.3.4-** Calculer l'énergie magnétique W du solénoïde. Retrouver l'auto-inductance L_1 du solénoïde.

A l'intérieur du premier solénoïde, on place un deuxième solénoïde cylindrique de même axe z'z, de rayon R_2 et de longueur ℓ_2 supposé infini ($\ell_2 \gg R_2$), comportant N_2 spires par unité de longueur, est parcouru par un courant constant d'intensité I_2 (figure ci-dessous).



- **4.3.5-** Calculer l'inductance mutuelle, $M = M_{12} = M_{21}$, entre les deux solénoïdes en fonction de μ_0 , N_1 , N_2 , R_2 et ℓ_2 .
 - **4.3.6-** Exprimer *M* dans le cas où $\ell_2 \rightarrow \ell_1$, $R_2 \rightarrow R_1$ mais avec $N_2 \neq N_1$.
- **4.3.7-** On rappelle que lorsque les résistances des fils sont négligeables, les tensions aux bornes des solénoïdes s'expriment :

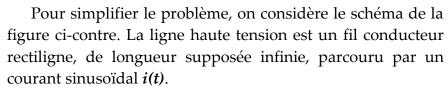
$$U_1(t) = L_1 \frac{dI_1(t)}{dt} + M \frac{dI_2(t)}{dt}$$
 et $U_2(t) = L_2 \frac{dI_2(t)}{dt} + M \frac{dI_1(t)}{dt}$

En prenant le cas étudié en 3.6.6-, calculer le rapport $\frac{U_2(t)}{U_1(t)}$ en fonction de N_2 et N_1 .

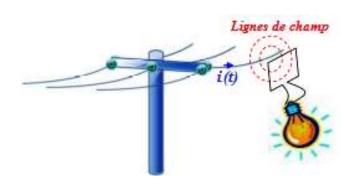
Exercice 4.4. (Contrôle continu 2013-2014)

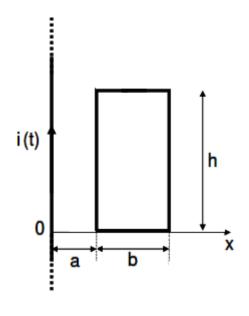
Une ligne haute tension transporte un courant sinusoïdal i(t). On approche dans le plan de la ligne de courant et à une distance a, une bobine rectangulaire plate, de dimensions $b \times h$ et comportant N spires.

Cette bobine d'inductance et de résistance négligeables, est fermée sur une ampoule qui s'éclaire si l'amplitude de la tension à ses bornes est supérieure à **2V**. On souhaite déterminer le nombre de spires nécessaires pour que la lampe s'allume...



- **4.4.1-** Représenter sur la figure ci-contre le champ magnétique $\vec{B}(t)$ créé par le fil rectiligne infini à l'intérieur de la bobine rectangulaire (direction et sens).
- **4.4.2-** Écrire la relation intégrale du flux du champ magnétique $\Phi(\vec{B})$ dans la bobine en fonction de $\vec{B}(t)$, N, dS un élément infinitésimal de surface de la bobine et \vec{n} le vecteur unitaire normal à la surface. Représenté sur la figure le sens du courant induit $i_b(t)$ dans la bobine ainsi que le sens du vecteur \vec{n} .





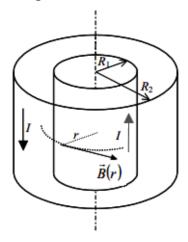
- **4.4.3-** Le module de $\vec{B}(t)$ à la distance x du fil est $B(t) = \frac{\mu_0}{2\pi x} i(t)$. Donner alors l'expression du flux $\Phi(\vec{B})$ à travers la bobine en fonction de μ_0 , i(t), N, a, b et h.
 - **4.4.4-** Donner la relation entre la f.é.m induite e(t) dans la bobine et le flux $\Phi(\vec{B})$.
- **4.4.5-** Donner l'expression de u(t), la tension aux bornes de la bobine en fonction de μ 0, N, a, b, h et $\frac{d}{dt}i(t)$.
 - 4.4.6- Exprimer le nombre de spires nécessaires à l'allumage de l'ampoule.

Données : i(t) = 1500 sin(300t), a = 30 cm, b = 2 cm, h = 4 cm et $\mu_0 = 4\pi \cdot 10^{-7}$ S.I.

Exercice 4.5. (Exercice supplémentaire)

Un câble coaxial est constitué de deux <u>surfaces</u> cylindriques coaxiales métalliques de rayons R_1 et $R_2 > R_1$, (la densité de courant est surfacique). Le conducteur intérieur est parcouru par un courant d'intensité I parallèle à l'axe des cylindres. Le conducteur extérieur, servant de fil de retour, est parcouru par la même intensité mais en sens contraire.

- **4.5.1-** Calculer l'auto-inductance par unité de longueur du câble de deux farçons, l'une en utilisant directement la définition et l'autre en utilisant l'énergie du champ magnétique.
 - 4.5.2- Calculer aussi la capacité par unité de longueur du câble
 - **4.5.3-** Calculer le produit de ces deux quantités et conclure.



Exercice 4.6. (Exercice supplémentaire)

Un solénoïde infini d'axe (Oz), de rayon R, comporte n spires jointives par unité de longueur, parcourues par une intensité $i(t) = I_0 \cos \omega t$.

- **4.6.1-** Calculer la f.é.m. induite e(t) qui apparait dans un conducteur filiforme (\mathscr{C}) à une seule boucle de forme quelconque entourant le solénoïde (on néglige l'auto-inductance de (\mathscr{C})).
- **4.6.2-** Calculer le champ électrique \vec{E} en tout point extérieur au solénoïde, en négligeant l'influence du conducteur (\mathscr{C}) (on commencera par simplifier la forme de \vec{E} en utilisant des arguments de symétrie, puis on utilisera le théorème de Gauss et la loi de Faraday). Que vaut la circulation de \vec{E} le long du conducteur (\mathscr{C})?
- **4.6.3-** On considère maintenant un conducteur filiforme (\mathscr{C}) contenu dans un plan z = constante ((\mathscr{C}) dans un plan perpendiculaire à (Oz)) et placé entièrement a l'intérieur du solénoïde. Calculer la f.é.m. induite e(t) qui apparait dans (\mathscr{C}). Calculer le champ électrique \vec{E} à l'intérieur du solénoïde en négligeant l'influence de (\mathscr{C}). Que vaut la circulation de \vec{E} le long de (\mathscr{C})?