Contrôle d'Analyse Fondamentale :

S2

Durée : 2h

Exercice 1:

On considère une suite de réels (a_n) , une suite de complexes (b_n) et on note pour tout $n \in \mathbb{N}$:

$$S_n = \sum_{k=0}^{n} a_k b_k \text{ et } B_n = \sum_{k=0}^{n} b_k.$$

- En remarquant que, pour k ≥ 1, b_k = B_k − B_{k−1}, démontrer que, pour tout entier naturel n non nul, S_n = ∑_{k=0}ⁿ⁻¹ (a_k − a_{k+1})B_k + a_nB_n (transformation d'Abel).
- On suppose que la suite (B_n) est bornée et que la suite (a_n) est décroissante de limite nulle.
 - (a) Démontrer que la série ∑_{k≥0} (a_k − a_{k+1}) converge.
 - (b) Démontrer qu'il existe un réel M > 0 tel que :∀k ∈ N, |(a_k − a_{k+1})B_k| ≤ (a_k − a_{k+1}) × M.
 - (c) En déduire que la série ∑_{n≥0} a_nb_n est absolument converge (et donc convergente).
 - (d) En appliquant le résultat précédent au cas où b_n = (−1)ⁿ, donner une démonstration du théorème des séries alternées, après l'avoir énoncé.
- Exemple.

Dans cette question, θ est un réel différent de $2k\pi$ $(k \in \mathbb{Z})$ et $\alpha \in \mathbb{R}$.

- (a) Calculer pour n entier naturel non nul, $\sum_{k=1}^{n} e^{ik\theta}$.
- (b) En déduire pour n entier naturel non nul, $\sum_{k=1}^{n} \sin(kx)$.
- (c) Discuter en fonction du réel α la nature de la série ∑_{n≥1} e^{inθ}/n^α.
- Soit la série de fonction ∑_{n≥1} u_n où pour x réel et n entier naturel non nul, u_n(x) = sin(nx) / √n
 Démontrer que cette série de fonctions converge simplement en tout point de R.

Exercice 2:

Pour $x \ge 0$, on pose $u_n(x) = \frac{x}{n^2 + x^2}$.

- 1. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge uniformémement sur tout intervalle [0, A], avec A > 0.
- 3. Vérifier que, pour tout $n \in \mathbb{N}$, $\sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2} \ge \frac{1}{5}.$
- En déduire que la série ∑_{n≥1} u_n ne converge pas uniformément sur R₊.
- 5. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ converge uniformément sur \mathbb{R}_+ .
- 6. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ converge normalement sur tout intervalle [0, A], avec A > 0.
- 7. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n u_n$ ne converge pas normalement sur \mathbb{R}_+ .

Bonne chance