

Examen de rattrapage d'Analyse 2

La rédaction, la clarté et la précision dans les raisonnements constitueront des éléments importats dans l'évaluation des copies. Tout échange de matériel de quelque nature que ce soit est interdit. Bon courage.

Exercice 1 1. Pour $n \ge 0$, on définit

$$I_n = \int_0^1 \frac{x^n}{1+x} dx.$$

- (a) Démontrer que la suite (In) tend vers 0.
- (b) Pour $n \geq 0$, calculer $I_n + I_{n+1}$.
- (c) En déduire $\lim_{n\to+\infty} \sum_{k=0}^n \frac{(-1)^k}{k+1}$.
- 2. On note, pour $n \ge 1$,

$$I_n = \int_0^1 \frac{1}{1+x^n} dx.$$

Soit également $\alpha \in [0, 1[$.

(a) Démontrer que, pour tout n ≥ 1,

$$\frac{\alpha}{1+\alpha^n} \le I_n \le 1$$

(on pourra encadrer \int_0^{α} puis \int_{α}^1).

- (b) Démontrer que (In) est croissante.
 - (c) Déduire des questions précédentes que (In) converge vers 1.
 - (d) En s'inspirant du modèle précédent, étudier

$$J_n = \int_0^{\pi/2} e^{-n\sin t} dt.$$

Exercice 2 On cherche à résoudre sur R^{*}₊ l'équation différentielle :

$$x^2y'' - 3xy' + 4y = 0. (E)$$

- 1. Cette équation est-elle linéaire ? Qu'est-ce qui change par rapport au cours ?
- 2. Soit y une solution de (E) sur \mathbb{R}_+^* . Pour $t \in \mathbb{R}$, on pose $z(t) = y(e^t)$.
 - (a) Calculer pour $t \in \mathbb{R}$, z'(t) et z''(t).
 - (b) En déduire que z vérifie une équation différentielle lináire d'ordre 2 à coefficients constants que l'on précisera.
 - (c) Résoudre l'équation différentielle trouvée à la question précédente.
 - (d) En déduire y.
- 3. Vérifier que, réciproquement, les fonctions trouvées sont bien toutes les solutions (E) et conclure.