TD d'Analyse 1 : Suites numériques.

CPI 1 / S 1.

Exercice 1:

Etudier la convergence des suites suivantes.

(1)
$$u_n = \frac{n \sin n}{n^2 + 1}$$
 (2) $u_n = \frac{n + (-1)^n}{3n - (-1)^n}$ (3) $u_n = \frac{n - 1}{n + 1}$ (4) $u_n = \cos((n + \frac{1}{n})\pi)$

(5)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$
 (6) $u_n = \frac{n - \sqrt{n^2 + 1}}{n - \sqrt{n^2 - 1}}$ (7) $u_n = (\sin \frac{1}{n})^{1/n}$

Exercice 2:

On considère la suite $(H_n)_{n\in\mathbb{N}^*}$ définie par

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

- 1. En utilisant une intégrale, montrer que $(\forall n > 0)$, $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$.
- 2. En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$.
- 3. Déterminer la limite de H_n .
- 4. Montrer que $u_n = H_n \ln(n)$ est décroissante et positive.
- 5. Conclusion?

Exercice 3:

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=1}^n \frac{1}{n+k}$ et $S'_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.

1. Etablir que pour tout p > 1,

$$\int_{p}^{p+1} \frac{\mathrm{d}x}{x} \le \frac{1}{p} \le \int_{p-1}^{p} \frac{\mathrm{d}x}{x}$$

En déduire la limite de (S_n) .

2. Etablir que $S'_{2n} = S_n$. En déduire la limite de (S'_n) .

Exercice 4:

Soit (u_n) une suite de réelle strictement positive.

- 1. On suppose $\frac{u_{n+1}}{u_n} \to \ell$.
 - (a) Montrer que si $\ell < 1$ alors $u_n \to 0$.
 - (b) Montrer que si $\ell > 1$ alors $u_n \to +\infty$.
 - (c) Observer que dans le cas $\ell = 1$ on ne peut rien conclure.
- 2. On suppose $\sqrt[n]{u_n} \to \ell$.
 - (a) Montrer que si $\ell < 1$ alors $u_n \to 0$.
 - (b) Montrer que si $\ell > 1$ alors $u_n \to +\infty$.
 - (c) Montrer que dans le cas $\ell = 1$ on ne peut rien conclure.
- 3. Montrer que si la suite $(\frac{\mathbf{u}_{n+1}}{\mathbf{u}_n})$ converge vers un réel p, alors $(\sqrt[n]{\mathbf{u}_n})$ converge et a même limite.
- 4. Application : limites de a) $\sqrt[n]{C_{2n}^n}$ b) $\frac{n}{\sqrt[n]{n!}}$ c) $\frac{1}{n^2} \sqrt[n]{\frac{(3n)!}{n!}}$.

ENSA-KENITRA A.U: 2020-2021

Exercice 5:

Soient $(u_n)_{n\in\mathbb{N}^*}$ une suite et $v_n=\frac{1}{n}$ $(u_1+u_2+\cdots+u_n)$.

1. Si $(u_n)_{n\in\mathbb{N}^*}$ a pour limite ℓ , démontrer que $(v_n)_{n\in\mathbb{N}^*}$ a pour limite ℓ .

<u>Application</u>: si $(x_n)_{n\in\mathbb{N}}$ est une suite telle que $\lim_{n\to+\infty}(x_n-x_{n-1})=0$, montrer que

$$\lim_{n\to +\infty}(\frac{x_n}{n})=0.$$

- 2. Si $u_n = (-1)^n$, vérifier que la suite $(v_n)_{n \in \mathbb{N}}$ converge bien que la suite $(u_n)_{n \in \mathbb{N}}$ diverge.
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est croissante et si $(v_n)_{n\in\mathbb{N}}$ converge, montrer que $(u_n)_{n\in\mathbb{N}}$ converge. (On pourra montrer que si (u_n) dépasse M à partir du rang N, alors $\lim_{k\to+\infty} v_{N+k} \geq M$).

Exercice 6:

Soit a > 0. On définit la suite $(u_n)_{n \ge 0}$ par u_0 un réel vérifiant $u_0 > 0$ et par la relation $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$. On se propose de montrer que (u_n) tend vers \sqrt{a} .

- 1. Montrer que $u_{n+1}^2 a = \frac{(u_n^2 a)^2}{4u_n^2}$.
- 2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n \ge 1}$ est décroissante.
- 3. En déduire que la suite (u_n) converge vers \sqrt{a} .
- 4. En utilisant la relation $u_{n+1}^2 a = (u_{n+1} \sqrt{a})(u_{n+1} + \sqrt{a})$ donner une majoration de $u_{n+1} \sqrt{a}$ en fonction de $u_n \sqrt{a}$.
- 5. Si $u_1 \sqrt{a} \le k$ et pour $n \ge 1$ montrer que $u_n \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$.
- 6. Application : Calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3$.

Exercice 7:

Soient
$$v_n = \sum_{k=1}^{k=n} \frac{(-1)^k}{k}$$
 et $t_n = \sum_{k=1}^{k=n} \frac{(-1)^k}{k(k+1)}$.

- 1. Montrer que les suites $(v_{2n-1})_{n\in\mathbb{N}}$ et $(v_{2n})_{n\in\mathbb{N}}$ sont adjacentes. En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ converge.
- 2. Démontrer que la suite $(t_n)_{n\in\mathbb{N}}$ est convergente.

Exercice 8:

Soient a, b deux réels strictement positifs. On considère les suites définies par :

$$a_0 = a$$
, $b_0 = b$, $a_{n+1} = \frac{a_n + b_n}{2}$, $b_{n+1} = \sqrt{a_n b_n}$.

- 1. Montrer que les deux suites $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ sont adjacentes.
- 2. En déduire qu'elles convergent vers la même limite. Cette limite s'appelle la moyenne arithmético-géométrique de a et b.

ENSA-KENITRA A.U: 2020-2021

Exercice 9:

On considère les deux suites : $u_n=1+\frac{1}{1!}+\ldots+\frac{1}{n!}$; $n\in\mathbb{N},$ et $v_n=u_n+\frac{1}{n!}$; $n\in\mathbb{N}.$

- 1. Montrer que $(u_n)_n$ et $(v_n)_n$ convergent vers une même limite.
- 2. Montrer que cette limite est un élément de $\mathbb{R}\backslash\mathbb{Q}.$

Bonne chance